Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases.

نویسنده

  • D J Beech
چکیده

Blood vessels are essential for animal life, allowing flow of oxygen and nutrients to tissues and removal of waste products. Consequently, inappropriate remodelling of blood vessels, resulting in occlusion, can lead to disabling or catastrophic events: heart attacks, strokes and claudication. An important cell type of remodelling is the VSMC (vascular smooth-muscle cell), a fascinating cell that contributes significantly to occlusive vascular diseases by virtue of its ability to 'modulate' to a cell that no longer contracts and arranges radially in the medial layer of the vessel wall but migrates, invades, proliferates and adopts phenotypes of other cells. An intriguing aspect of modulation is switching to different ion transport systems. Initial events include loss of the Ca(V)1.2 (L-type voltage-gated calcium) channel and gain of the K(Ca)3.1 (IKCa) potassium channel, which putatively occur to enable membrane hyperpolarization that increases rather than decreases a type of calcium entry coupled with cell cycle activity, cell proliferation and cell migration. This type of calcium entry is related to store- and receptor-operated calcium entry phenomena, which, in VSMCs, are contributed to by TRPC [TRP (transient receptor potential) canonical] channel subunits. Instead of being voltage-gated, these channels are chemically gated - importantly, by key phospholipid factors of vascular development and disease. This brief review focuses on the hypothesis that the transition to a modulated cell may require a switch from predominantly voltage- to predominantly lipid-sensing ion channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of ion channels involved in the proliferative response of femoral artery smooth muscle cells.

OBJECTIVE Vascular smooth muscle cells (VSMCs) contribute significantly to occlusive vascular diseases by virtue of their ability to switch to a noncontractile, migratory, and proliferating phenotype. Although the participation of ion channels in this phenotypic modulation (PM) has been described previously, changes in their expression are poorly defined because of their large molecular diversi...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

جریانهای یونی کانالهای پتاسیمی و کلسیمی در سلولهای ایزوله شده عضله صاف سمینال وزیکول خوکجه و مهاراین جریانها بوسیله Glibenclamide

Smooth muscle cells of seminal vesicle exhibit excitatcry junction patential on nerve stimulation and can fire evoked) action potential (1). However) the type of ion channels that underlie this electrical activity have not been described. I have investigated the type and pharmacology of ion channel in freshly isolated smooth muscle cells from the guinea-pig seminal vesicle using whole-cell patc...

متن کامل

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor

Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 35 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2007